
This article appeared in the
March 2005 issue of

Subscribe instantly at
www.bijonline.com

• Free in the U.S.

• $48 per year in Canada and Mexico

• $96 per year everywhere else

Enterpris
e Integrit

y: Loosel
y Coupled?

By David McGoveran

http://www.bijonline.com

6 • B u s i n e s s I n t e g r a t i o n J o u r n a l • M a r c h 2 0 0 5

These days Service-Oriented
Architecture (SOA) is

presented as the solution to
everything. This is especially true of the Web Services (i.e., an
implementation of a Web-accessible service compliant with
Web Services standards) SOA implementation. Far too many
vendors purport that support of standard interfaces such as
Web Services is sufficient for an SOA to be loosely coupled.
This is mostly marketing hype from those with a vested
interest. In fact, it’s just one example of a malignant disease
that has been invading IT surreptitiously over the last two
decades—a kind of wolf in sheep’s clothing.

I’m a big fan of producer-consumer software models,
service encapsulation, and SOA incorporating these. In
fact, this is largely what was intended by client/server
architecture before technically incompetent press and
analysts joined a marketing bandwagon of incapable
vendors to distort and redefine it to mean a simple two-tier
hardware architecture or, worse, a variant of PC network
computing. We learned quickly that standard interfaces
were necessary for maintenance, and that dynamic service
interrogation was necessary for robustness in the face of
changing requirements and implementations. We also
learned, at great expense, that these interface standards
were insufficient.

Early SOAs required tremendous discipline to build
scalable systems. Few designers or developers, and even fewer
vendors, had a clue as to how to do this for distributed
applications. You certainly weren’t forced to build scalable,
highly available distributed applications by either tools or the
standards. Invocation was by remote procedure calls,
meaning that both consumer and producer maintain
dedicated application-level threads, with the consumer
blocking (i.e., being synchronized) from request until
response. Of course, most early applications were single-
threaded, so the idea of asynchronous activity by the client
application was a non-starter.

Highly scalable and available distributed applications
must avoid synchronization. To the degree business
requirements permit, every service request is an atomic
message rather than conversational; the request message is
sent and consumed asynchronously, the service produces
asynchronously with consumer activity and other service
activities, client processes are stateless between request and
response, server state preservation between requests is
minimized and, if necessary, state is persisted. Inter-service
coupling through shared resources is the most difficult
synchronization to minimize, with client-service coupling
being almost as bad. When a service can be composed of
other services (think composite applications), avoiding
coupling becomes even more critical. Notice that such an

SOA is inherently event-driven and loosely coupled with
respect to service interaction. To be highly available, the
architecture also must be loosely coupled with respect to
service instantiation (to enable failover and load balancing)
and change (to avoid downtime when services are
upgraded).

Now reconsider the claim that loosely coupled just
means service interfaces are based on standards. Wouldn’t it
be nice if all you had to do was buy standards-based
products to get something as complex as scalability or high
availability? You know, as in “we support Web Services so
our product is loosely coupled.” The truth, however, is that
Web Services’ self-describing interfaces and discoverable
services don’t provide the operational benefits of loose
coupling. These aspects of a loosely coupled architecture
depend on the details of how Web Services are used, and on
whether or not both asynchronous interaction and true
messaging transports are supported. Unfortunately,
implementing asynchronous interaction with Web Services
requires considerable care. It currently requires SOAP over
JMS using only one-way request messaging. Response
handling on the client is less well-defined, easily raising
what should be a middleware service to the level of
application code.

This brings us back to the main point: You should ask
why it’s so advantageous for some to define loosely
coupled as meaning standards adherence, conveniently
glossing over the real implementation issues that induce
strong coupling. Interface standards can’t make
architectures successful, let alone suffice to make an
architecture loosely coupled. This is just one example of
the danger of adopting standards for standards’ sake.
Standards are great time savers and the right standards
choices can enable functionality, but too often we’ve fallen
prey to the persuasion of standardization over business
requirements and technical appropriateness. Standards
that are misrepresented aren’t worth the biased
committees that develop them. Adherence to any
inappropriate standard, or to a bad standard, will consume
enterprise resources as quickly as the fabled wolf that ate
all the sheep. Your enterprise integrity depends on rejecting
these “sheep” that don’t bear wool. bij

ENTERPRISE
INTEGRITY
Loose ly
Coupled?

B Y D A V I D M c G O V E R A N

David McGoveran is president of Alternative Technologies. He has more than 25
years of experience with mission-critical applications and has authored numerous
technical articles on application integration.
e-Mail: mcgoveran@bijonline.com
Website: www.alternativetech.com

About the Author

